Dark matter is thought to make up 83 percent of the mass of the universe—but by its nature cannot be seen. However, science can infer the presence of this elusive force by measuring the gravitational warping of light between cluster galaxies and their distant neighbors. The image here, from the Hubble Space Telescope, is of Abell 1689, a super cluster 2.2 billion light years away. The presumed effect of dark matter is represented by blue overlay.

For more information on dark matter and dark energy, come to McCarthy Observatory’s Second Saturday Stars on December 10.

Source: NASA/ESA/JPL-Caltech/Yale/CNRS
The John J. McCarthy Observatory
New Milford High School
388 Danbury Road
New Milford, CT 06776
Phone/Voice: (860) 210-4117
Phone/Fax: (860) 354-1595
www.mccarthyobservatory.org

JJMO Staff
It is through their efforts that the McCarthy Observatory has established itself as a significant educational and recreational resource within the western Connecticut community.

Steve Barone
Colin Campbell
Dennis Cartolano
Mike Chiarella
Jeff Chodak
Bill Cloutier
Charles Coppie
Randy Fender
John Gebauer
Elaine Green
Tina Hartzell
Tom Heydenburg
Phil Imbrogno
Bob Lambert
Dr. Parker Moreland
Allan Ostergren
Cecilia Page
Bruno Ranchy
Josh Reynolds
Barbara Richards
Monty Robson
Don Ross
Ned Sheehey
Gene Schilling
Katie Shusdock
Jon Wallace
Bob Willaum
Paul Woodell
Amy Ziffer

In This Issue
THE YEAR OF THE SOLAR SYSTEM ... 3
OUT THE WINDOW ON YOUR LEFT 5
CASSINI AND THE LUNAR ALPS ... 6
OPEN TO THE PUBLIC ... 7
UPDATE ON NOVEMBER’S LAUNCHES 8
PHOBOS-GRUNT .. 8
POLAR EXPRESS ... 8
MARS SCIENCE LABORATORY .. 8
PURCHASING A TELESCOPE ... 8
LIFE CYCLE OF STARS .. 11
DECEMBER HISTORY .. 12
JUPITER AND ITS MOONS .. 14
TRANSIT OF JUPITER’S RED SPOT 14
DECEMBER NIGHTS ... 14
SUNRISE AND SUNSET .. 14
ASTRONOMICAL AND HISTORICAL EVENTS 14
REFERENCES ON DISTANCES .. 16
INTERNATIONAL SPACE STATION/IRIDIUM SATELLITES 16
COVER PHOTO AND OTHER CREDITS 17

Galactic Observer
Editorial Committee
Managing Editor
Bill Cloutier
Production & Design
Allan Ostergren
Website Development
John Gebauer
Josh Reynolds
Technical Support
Bob Lambert
Dr. Parker Moreland

McCarthy Observatory
New Milford, CT
932
http://www.mccarthyobservatory.org
December Astronomy Calendar and Space Exploration Almanac
The Year of the Solar System

NASA announced on Oct. 7, 2010 that the upcoming year would be “The Year of the Solar System.” The “Year,” however, is a Martian year and, as such, 23 months in length. Some of the highlights of the “Year” of exploration are:

<table>
<thead>
<tr>
<th>Date</th>
<th>Mission</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>19 Nov 2010</td>
<td>Launch of O/OREOS, a shoebox-sized satellite designed to test the durability of life in space</td>
<td>Ground stations receiving data</td>
</tr>
<tr>
<td>19 Nov 2010</td>
<td>Launch of an experimental solar sail (NanoSail-D) aboard the Fast Affordable Scientific and Technology Satellite (FASTSAT)</td>
<td>Delayed separation from FASTSAT on 17 Jan 2011, deployment confirmed, sail is operational</td>
</tr>
<tr>
<td>7 Dec 2010</td>
<td>Japan's Akatsuki (Venus Climate Orbiter) spacecraft</td>
<td>Spacecraft fails to enter orbit around Venus - now in orbit around the Sun</td>
</tr>
<tr>
<td>14 Feb 2011</td>
<td>Stardust NExT encounters Comet Tempel 1</td>
<td>Successful rendezvous; see http://stardustnext.jpl.nasa.gov/</td>
</tr>
<tr>
<td>17 Mar 2011</td>
<td>MESSENGER enters orbit around Mercury</td>
<td>First spacecraft to achieve orbit around Mercury; see http://messenger.jhuapl.edu/</td>
</tr>
<tr>
<td>18 Mar 2011</td>
<td>New Horizons spacecraft crosses the orbit of Uranus</td>
<td>4+ more years to Pluto; see http://pluto.jhuapl.edu/</td>
</tr>
<tr>
<td>16 Jul 2011</td>
<td>Dawn spacecraft arrives at the asteroid Vesta</td>
<td>Orbit achieved; see http://dawn.jpl.nasa.gov/</td>
</tr>
<tr>
<td>5 Aug 2011</td>
<td>Launch of the Juno spacecraft to Jupiter</td>
<td>Successful launch/deployment; see http://missionjuno.swri.edu/</td>
</tr>
<tr>
<td>10 Sept 2011</td>
<td>Launch of twin GRAIL spacecraft to map Moon’s gravitational field</td>
<td>Successful launch/deployment; see http://solarsystem.nasa.gov/grail/</td>
</tr>
<tr>
<td>8 Nov 2011</td>
<td>Launch of the Phobos-Grunt sample-return mission</td>
<td>Successful launch/failure to leave low-Earth orbit (see p. 7)</td>
</tr>
<tr>
<td>26 Nov 2011</td>
<td>Launch of the Mars Science Laboratory (MSL)</td>
<td>Successful launch/deployment; see http://marsprogram.jpl.nasa.gov/msl/</td>
</tr>
<tr>
<td>05 Aug 2012</td>
<td>MSL lands on Mars</td>
<td></td>
</tr>
</tbody>
</table>

Other notable events:
- August 9, 2011: Opportunity reached the rim of Endeavour crater
- March 3, 2012: Mars at Opposition
- June 6, 2012: Venus Transit (visible before sunset on the east coast)
“Out the Window on Your Left”

It’s been 39 years since we left the last footprint on the dusty lunar surface. Sadly, as a nation founded on exploration and the conquest of new frontiers, we appear to have lost our will to lead as a space-faring nation. But, what if the average citizen had the means to visit our only natural satellite; what would they see out the window of their spacecraft as they entered orbit around the Moon? This column may provide some thoughts to ponder when planning your visit (if only in your imagination).

The view this month is of the lunar Alps and region adjacent to the crater Cassini. The photo on the following page extends from the rim of the prominent crater Plato that was formed when the lunar surface dropped away from the adjacent landforms.

On older maps, the area south of Cassini and bounded by the craters Aristillus and Theaetetus was once called Palus Nebularum or the Marsh of Mists. The crater Theaetetus, located adjacent to the foothills of the Caucasus mountains, is notable in that its floor is more than 1.5 km (almost 5,000 feet) below the surrounding mare.

Southwest of Theaetetus is the larger and more complex crater Aristillus. It has classical features of the large impact crater with terraced walls and multiple peaks protruding from its relatively flat floor. Ridges and gullies can be seen emanating from the crater walls out onto the plains.

Lunar "seas" and "marshes" are actually expansive at the upper left to the breech in the Caucasus mountains at the lower right where Mare Imbrium (Sea of Showers) meets Mare Serenitatis (Sea of Serenity).

The impact crater Cassini is located along the northeastern rim of the Imbrium basin. The floor of the crater was flooded by ancient Imbrium lava flows. Within the crater are two smaller craters: Cassini A at 15 kilometers (km) in diameter and Cassini B at 9 km.

Northwest of Cassini is the southern reach of the Alps mountain range. Just off shore of Promontorium Agassiz, a single mountain peak punches through the lava flows and casts its solitary shadow across the mare. Mons Piton rises to a height of 2.3 km above the volcanic plain, more than a kilometer less than Mons Blanc nestled among the other alpine peaks, but more imposing due to its isolated setting.

Slicing through the Alps is the Valles Alpes or the Alpine Valley. Running 190 km in length from Mare Imbrium to Mare Frigoris, the valley is likely a graben

Crater Cassini, as seen by ESA’s Smart-1 spacecraft (Small Missions for Advanced Research in Technology), which circled the Moon from 2003-2006.

Source: ESA

Apollo 17 astronauts "Jack" Schmitt and Eugene Cernan roving surface of Mare Serenitatis in December 1972.

Source: NASA
Cassini and the Lunar Alps
NOT SINCE THE END of the Apollo program has the general public been able to enter the Vehicle Assembly Building (VAB) at the Kennedy Space Center. For a limited time, you will be able to go into the VAB, via organized tours, and walk along the Transfer Aisle where massive rocket components were moved to their assembly bays by cranes high overhead. Making the opportunity even more special is the chance to view one of the retired space shuttle orbiters being prepared for their eventual display.

Constructed in 1966, the VAB was built to assemble the Saturn V rockets used to carry the Apollo astronauts to the Moon. It was one of the largest buildings (by volume) in the world.

The photo (left) was taken from inside the 525-foot high VAB, looking up from the 700-foot long Transfer Isle that traverses the floor of the building. The yellow bridge crane is one of the hoists used to lift and position the space shuttle orbiter along with the external tank and solid rocket boosters onto the mobile launch platform.
Update on November’s Launches

Phobos-Grunt

Russia’s attempt to revive its solar system exploration program suffered a major setback when the Phobos-Grunt spacecraft failed to leave Earth orbit. After a successful launch aboard a Zenit rocket into low-Earth orbit, the spacecraft’s main propulsion system failed to send it along the Martian moon Phobos. Engineers are continuing to work through the potential solutions, both hardware and software, but time is running out. The launch window for Mars closes in early December. If a timely solution is not found, the spacecraft’s orbit will quickly degrade, with the spacecraft falling back to Earth within the next month.

Polar Express

In the first manned launch since the retirement of the U.S. space shuttle, a Russian Soyuz spacecraft blasted off from the Baikonur Cosmodrome in Kazakhstan on November 13th. Launched in heavy snow, the Soyuz carried two cosmonauts and a NASA astronaut on their way to the International Space Station. The flight had been delayed due to the failure of an identical, but unmanned rocket in August.

Mars Science Laboratory

Billowing clouds of steam signaled the long awaited launch of the Mars Science Laboratory (MSL) aboard an Atlas V rocket. Liftoff occurred at 10:02 am (EST) from the Cape Canaveral Air Force Station. The booster stage of the Atlas rocket, fueled by kerosene and liquid oxygen and supplemented by four solid rockets, carried the spacecraft into the Florida sky for the first 4½ minutes. At that point, the upper stage, a Centaur rocket, fired its reusable liquid hydrogen and liquid oxygen powered engine to place the spacecraft into Earth orbit. A second burn followed and accelerated the spacecraft to escape velocity and on its way toward Mars. The spacecraft separated from the Centaur shortly thereafter, initiating the "cruise stage" that will last 8½ months. MSL is scheduled to arrive at Mars on August 5, 2012.

Purchasing a Telescope

During the holidays it’s not uncommon to see parents and grandparents carrying around a telescope that they just picked up at the mall or warehouse store for...
Reflectors have been around for almost as long as refractors, but use mirrors instead of lenses to bring light to the observer’s eye. A large mirror located at the closed end of the optical tube reflects light back up the tube to a smaller mirror mounted near the open end and out to an eyepiece. Mirrors are much easier and less expensive to manufacture than lenses with only an optical curve required on the front of the mirror. With mirrors, the light never passes through the glass, so there is no divergence of the light rays. However, since the optical tube is open to the atmosphere, mirrors will require periodic cleaning, adjustment and, eventually, recoating. Reflectors offer the best value, particularly for larger apertures.

The most popular compound or catadioptric telescopes combine a large, rear spherical mirror with a front corrector lens to create a very compact optical tube. Companies such as Meade and Celestron built their businesses on the Schmidt-Cassegrain design. While generally more expensive than reflectors, the compound telescope offers a very portable alternative for large aperture telescopes. Disadvantages include cool down time (since the optical tubes are sealed), and a relatively large secondary mirror that degrades the image of high contrast objects (planets or the Moon). The front corrector plate is also susceptible to dew formation although this can be managed with a dew shield or corrector plate heater.

There are several terms that are used in the sales promotion of telescopes. Some of the common ones are discussed below:

Aperture

Aperture refers to the size of the largest lens or mirror in the telescope, for example, the primary mirror in an 8-inch reflector is 8-inches in diameter. As a general rule, bigger is better, as light gathering and resolution increase with the size of the optics. However, as with everything else, there are other considerations that limit the practical size of a particular instrument. Alvan Clark & Sons figured the 40-inch lens for the Yerkes Observatory’s reflector, delivering the lens in 1897. More than 100 years later, it is still the world’s largest working refractor. Why? The weight of the glass and

http://www.mccarthyobservatory.org

Dec 2011 • 9
the complexities in supporting a large lens by its edge and
the absorption of light passing through the glass were fac-
tors; however, the refractor was ultimately done in by Sir
Isaac Newton when he built the first reflecting telescope
in 1668. Mirrors, unlike lenses, can be completely sup-
ported from the back. Since light does not pass through
the glass, reflected images do not suffer from “chromatic
aberration.” Today single mirrors are routinely produced
with diameters exceeding 28 feet and telescopes are con-
structed combining multiple mirrors to achieve even larger
light gathering capabilities. So what size is good for you?
Before you answer, you may want to consider:

• Are you planning on setting up your telescope in a per-
manent installation, e.g., backyard observatory, or will you
be moving it in and out of your home every time you plan on
observing. If the latter, then weight, portability and ease of
set up are important considerations. Due to its size and weight,
my telescope saw very little use until I invested in a wheeled
platform that allows me to easily roll the fully assembled tele-
scope in and out of my garage in minutes.

• Are you planning on taking your telescope on the road,
with you on vacation or planning to travel some distance to
find truly dark skies or observe a “once in a lifetime event?”
Whether by train, plane or automobile, care must be taken
to protect your telescope and ensure that it arrives at its des-
tination in working order (mechanically and optically). If this
is important to you, a smaller and simpler design such as a
refractor may be a good choice.

• What are you interested in looking at? Spectacular
views of the Sun, Moon and planets can be acquired with
a relatively modest instrument. However, if your passion
is hunting down the more elusive and distant residents of
our the Milky Way Galaxy or exploring other galaxies far,
far, away, it will require a much larger aperture to capture
those meager photons.

Magnification

Magnification is likely the most overrated measure
of a telescope’s capabilities. Magnification is a func-
tion of the eyepiece placed in the path of the incoming
light and in front of the observer’s eye; the observer
can change the magnification by simply selecting a dif-
ferent eyepiece. As such, it shouldn’t be a criterion in
selecting a telescope.

The limiting useful magnification is approximately 50
times the diameter of the objective lens or primary mirror.
For example, a small refracting telescope with a 4-inch
objective lens can be pushed to a magnification of 200
times, however, only under the best observing conditions
and, in general, only on bright objects such as the Moon and
planets. Most astronomers prefer the views that lower mag-
nification provides with a wider field and brighter image. So,
the next time you are captured by the stunning views of the
universe on the packaging of a modest instrument, remem-
ber that the potential of most telescopes is rarely realized,
particularly if you reside in the light polluted skies of the north-
east. A higher power eyepiece magnifies not only the
telescope’s intended target but also the side-effects of living
under 20 miles of Earth’s atmosphere.

Mounts

While generally not at the top of the list as far as features,
the telescope’s mounting system and construction is key to
its ease of use and the stability of the
image. A poorly designed mount or one
with flimsy construction can be just as
frustrating to deal with as poor optics. An
altitude-azimuth or alt-az mount is the
simplest type of telescope mount and
generally the easiest to set up. In this
arrangement, the mount allows the
telescope to move left and right while pivoting up and down.
It is commonly found on Dobsonian-type telescopes, is user
friendly and can be mechanized to track celestial objects
across the sky.

Another common mount design is the equatorial mount.
In this design, one axis is aligned with the celestial pole, re-
quiring only the movement around this axis to follow objects
across the sky. It is the easiest configuration for tracking and
is generally preferred for astrophotography. Some alt-az
mounts can be converted to an equatorial configuration with
the addition of an “equatorial wedge.” Equatorial mounts,
have a higher power eyepiece magnifies not only the
telescope’s intended target but also the side-effects of living
under 20 miles of Earth’s atmosphere.

Go-To

Essentially, a computer controlled pointing system, “go-
to” systems, allows the user to select an object from a
data base and command the drive motors on the mount
to move the telescope to the object’s location in the sky.
This presupposes that the telescope user has properly set
up the telescope and successfully navigated through the
alignment process (a process by which the telescope’s
computer determines where it’s pointed, the local time,
and its position on the Earth). Most “go-to” telescopes
come with a large database, some of which can be modi-
ified (supplemented) by the user. While “go-to” capability
is extremely convenient and can take you to thousands of
objects in its database in a blink of an eye, it doesn’t
necessarily mean that you will be able to see the object.
Depending upon the size of your telescope (see Aper-
ture), many objects in these databases are just too dim to
see with the equipment provided. CCD cameras are much
more sensitive than your eye and can accumulate light for

http://www.mccarthyobservatory.org
long durations. So, if you are planning on using your telescope primarily as a camera lens, then some of the disadvantage of a small aperture can be overcome. However, if you plan on doing most of your observing at the eyepiece, you may want to consider spending the money on a larger aperture rather than on “go-to” electronics.

What to Do

If you are seriously considering acquiring a telescope, a little bit of research can go a long way in enjoying your final purchase. If possible, try to observe through the telescope(s) that you are considering. The McCarthy Observatory has a monthly open house. When the skies are clear, up to a dozen telescopes can be found on the premises (including refractors, reflectors, a Dobsonian, and several Schmidt-Cassegrains). Compare the same celestial objects through different scopes, talk to the owners about portability, ease of setup and operation. Check out product reviews in trade magazines such as *Sky and Telescope* and *Astronomy* and on their websites. Contact reputable dealers and visit trade shows such as the Northeast Astronomical Forum where you can pick the brains of industry experts.

Life Cycle of Stars

“You know Orion always comes up sideways. Throwing a leg up over our fence of mountains, And rising on his hands, he looks in on me Busy outdoors by lantern-light with something I should have done by daylight...”

The excerpt is from the poem “Star Splitter” by the American poet and insightful observer of the night sky, Robert Frost. As Frost so eloquently describes, the rotation of the Earth gives the appearance of Orion climbing over its edge (the horizon) to take its place in the night sky.

One of the largest and most prominent constellations in the winter sky, the stars and other celestial objects located within Orion’s boundary provide a visual history of the life cycle of a star, from birth to death. The asterism comprising the body of the mythological hunter forms an hourglass pattern. Betelgeuse and Bellatrix mark the location of the shoulders. The three bright stars Alnitak, Alnilam and Mintaka (from east to west) form the belt or waist of the giant. Saiph and Rigel identify the knees or legs. Hanging from the belt stars is Orion’s sword, marked by three faint “stars.”

The middle “star” in the sword is actually the Great Orion Nebula (M42). This expansive cloud of gas, comprised primarily of hydrogen and helium, is an active star-forming region approximately 1,350 light years distant. So large is the cloud that light (moving at 186,000 miles each second) takes over 25 years to travel from one side of the cloud to the opposite side. The cloud glows from the energy emitted by the newly formed stars created within the cloud. The four brightest stars embedded within the cloud are known as the Trapezium and can be easily seen through a small telescope. The stars are estimated to be...
less than 1 million years old, extremely young as compared to the 5 billion years our Sun has been shining.

The eastern shoulder of Orion is marked by the red giant Betelgeuse (Alpha Orionis). Betelgeuse is the 10th brightest star in the sky and 640 light years distant. It is the largest star located within 1,000 light years of our Sun and has a diameter 600 times our Sun. Its tenuous atmosphere would extend out to the orbit of the planet Jupiter if Betelgeuse was placed in the center of our solar system.

Betelgeuse exemplifies the beginning of the end of a star’s life. The hydrogen in the core has been expended (converted into helium) and nuclear fusion has essentially stopped. Gravity is forcing the helium core to contract and the temperature within the core to rise. The higher temperature is causing hydrogen outside the core to fuse faster and the outer layers of the star to expand. As the surface (photosphere) distends, the temperature drops. Betelgeuse’s ruddy orange appearance is due to its relatively low surface temperature of 3,650 K, as compared to our Sun’s temperature of 5,800 K.

Opposite Betelgeuse and marking the western knee of the hunter is the star Rigel (Beta Orionis). This blue-white giant is the 6th brightest star in the sky, even at a distance of 770 light years. One of the most luminous stars in the night sky, Rigel is 85,000 times brighter than our Sun. Only its vast distance prevents it from outshining any other star in the sky. Its massive size (17 times more massive and 78 times the size of our Sun), consumes hydrogen at a rapid pace. As such, Rigel’s demise will come quickly and violently.

The Orion constellation contains a myriad of deep sky objects including nebulas and multiple star systems. Several multiple star systems are located south of the Orion Nebula including Iota Orion, Struve 747 and Struve 745. There are also many areas of nebulosity. M43 is a detached portion of the Great Orion Nebula (M42) and is located just north of the main cloud. M78 is a bright diffuse nebula located 2½° northeast of Alnitak. The star Alnitak illuminates the nebula IC 434 and within it, the most famous dark cloud, the Horsehead Nebula (photo above right).

Orion is also a great celestial signpost. Many of the brightest stars of the winter sky can be located by using the sight lines formed by Orion’s brightest stars. Approximately 30° east from Bellatrix and Betelgeuse lays Procyon the brightest star in Canis Minor, Orion’s smaller hunting dog. Sirius, the brightest star in the sky, can be found by extending a line from the belt stars 20° to the southeast. Only 8 light years away, Sirius is also the brightest star in Canis Major, Orion’s larger hunting dog. Approximately 20° to the northwest of the belt stars is the star Aldebaran, a red giant star and one of the “eyes” of the bull, Taurus. Beyond Aldebaran is the open star cluster, the Pleiades. Extending a line approximately 45° from the middle belt star Alnilam north between the stars Bellatrix and Betelgeuse is the star Capella, the brightest star in the constellation Auriga. The western most belt star Mintaka and the star marking the eastern shoulder, Betelgeuse, point northeast to the Gemini twins Castor and Pollux, approximately 40° distant.

December History

1968 was a year of turmoil. The United States was entangled in a war that even the Secretary of Defense concluded could not be won and he resigned from office. The My Lai massacre was one of many atrocities of the Vietnam War perpetrated by both sides during this year. Major U.S. cities were the target of race riots and anti-war protests. Chicago police violently clashed with protesters at the Democratic National Convention and civil rights leader Martin Luther King and presidential candidate Robert Kennedy were assassinated in 1968. To many Americans, the only heartening event in this otherwise horrific year was the reading from the Book of Genesis by the crew of Apollo 8 as they orbited the Moon on Christmas Eve.

The race to beat the Soviets to the Moon took a dramatic turn in 1968 and saw the United States take
its first lead by year’s end. Apollo 7 was launched in October 1968 into Earth orbit. A week or so later, the Soviets launched two Soyuz space craft into Earth orbit (one manned and one unmanned for a planned rendezvous). In November, another unmanned Zond flew around the Moon and photographed the previously unseen far side. The United States expected that the Soviets would attempt another moon shot in early December when the launch window for the Baikonur space center in Kazakhstan reopened (a Zond stood poised on the launching pad). Curiously, the opportunity passed without any activity. Cosmonaut Alexei Leonov would later attribute the Soviet’s loss of initiative and resolve to the premature death of Sergei Korolev, the “Chief Designer” of the Soviet space program as well as the design complexities of their Moon rocket (the N1).

While Apollo 7 had been a successful maiden voyage of the completely redesigned command module (after the Apollo 1 fire), the United States had yet to leave Earth orbit. NASA’s original plan was to launch a series of increasingly complex missions to near-Earth orbit before attempting a lunar excursion. Development of the lunar lander was behind schedule and violent vibrations in the Saturn rocket’s main stage needed to be corrected before NASA felt confident of sending men to the Moon. However, the apparent progress by the Soviets threatened to upstage the United States once again. It was a proposal by a quiet engineering genius, George Low, (Manager of the Apollo Spacecraft Program Office) to send the Apollo 8 command module alone into lunar orbit that would ultimately place the United States in a position to achieve President Kennedy’s goal to land a man on the Moon and safely return him to Earth by the end of the decade.

Apollo 8 was launched on December 21st under the command of Frank Borman with astronauts William Anders and Jim Lovell (Lovell replaced Michael Collins on the original team; Collins, who required back surgery, would go on to be the Command Module Pilot for Apollo 11). The launch was scheduled so that the crew would arrive at the Moon as the Sun was rising on the Sea of Tranquility. With the Sun low in the sky, the astronauts could photograph potential landing sites and resolve surface detail that would otherwise be washed out in the glare from a higher Sun.

The crew of Apollo 8 was the first to ride the three stage Saturn V rocket, with the explosive energy of an atomic bomb (the Saturn V had only been launched twice before – both unmanned). The night before the launch, the astronauts were visited by Charles Lindbergh. During the visit, it was discussed that the engines on the Saturn V would burn 10 times the amount of fuel every second that Lindbergh had used to fly nonstop from New York to Paris.

The Apollo 8 astronauts were also the first humans to leave Earth orbit and pass through the Van Allen radiation belts that extend up to 15,000 miles from Earth. To accomplish the mission, Apollo 8 had to cross the 240,000 mile void between the Earth and the Moon with sufficient precision so as to intercept the Moon (traveling at 2,300 miles an hour through space) just 69 miles above the lunar surface. By successfully doing so, the astronauts were the first humans to witness the rising of the Earth above the Moon’s horizon (Earthrise). They would also be the first to return to Earth and reenter the atmosphere at a speed of 25,000 miles an hour.

The highlight of the mission, to many, was the broadcast from the Apollo 8 command module during the ninth orbit of the Moon. After a brief introduction of the crew and their general impressions of the lunar landscape, William Anders said that the crew had a message for all those on Earth. The astronauts took turns reading from the book of Genesis, the story of creation. Frank Borman closed the broadcast with: “And from the crew of Apollo 8, we close with: Good night, Good luck, a Merry Christmas, and God bless all of you, all you on the good Earth.” It is estimated that a quarter of Earth’s population saw the Christmas Eve transmission.

In order to safely return to Earth, the main engine had to be restarted on the far side of the Moon (out of contact with the Earth). If successful, Apollo 8 would reappear from behind the Moon at a predetermined time. As predicted, the spacecraft re-emerged on time and when voice contact was regained, astronaut Jim Lovell would announce “Please be informed, there is a
Santa Claus.” It was Christmas Day. Apollo 8 would return safely to the Earth two days later, splashing down in the Pacific Ocean shortly before sunrise. The astronauts and the capsule were recovered by the aircraft carrier USS Yorktown.

Jupiter and its Moons

Jupiter reached Opposition on October 29th and, while setting earlier, is still well placed in the evening sky throughout the month. As one of the brightest star-like objects in the night sky, Jupiter can be found in the constellation Aries.

One of the more interesting and easier events to observe through a telescope is the projection of a shadow from one of Jupiter’s moons on the Jovian disk as the moon passes in front of (or transits) the planet. The photo on the right shows the shadow of Ganymede on the Jovian disk. On nights of good visibility the following events should be visible through a moderately-sized telescope (between approximately 5 pm and midnight).

Transits of Jupiter’s Moons

<table>
<thead>
<tr>
<th>Date</th>
<th>Moon</th>
<th>Transit Begins</th>
<th>Transit Ends</th>
</tr>
</thead>
<tbody>
<tr>
<td>5th</td>
<td>Io</td>
<td>8:54 pm</td>
<td>11:04 pm</td>
</tr>
<tr>
<td>12th</td>
<td>Io</td>
<td>10:50 pm</td>
<td>12:59 am (13th)</td>
</tr>
<tr>
<td>13th</td>
<td>Europa</td>
<td>5:39 pm</td>
<td>8:03 pm</td>
</tr>
<tr>
<td>20th</td>
<td>Europa</td>
<td>8:15 pm</td>
<td>10:39 pm</td>
</tr>
<tr>
<td>21st</td>
<td>Io</td>
<td>7:15 pm</td>
<td>9:24 pm</td>
</tr>
<tr>
<td>27th</td>
<td>Ganymede</td>
<td>9:05 pm</td>
<td>10:55 pm</td>
</tr>
<tr>
<td>27th</td>
<td>Europa</td>
<td>10:51 pm</td>
<td>1:15 am (28th)</td>
</tr>
<tr>
<td>28th</td>
<td>Io</td>
<td>9:11 pm</td>
<td>11:20 pm</td>
</tr>
</tbody>
</table>

December Nights

Nights in December are not to be missed. While the often frigid and turbulent atmosphere can be frustrating for astronomers, the reflection of shimmering starlight (or moonlight) off a snow covered landscape can be truly magical. The bright stars of the winter sky glow with color from orange to yellow to brilliant blue-white. A star-filled sky in December is unsurpassed in grandeur.

Sunrise and Sunset

<table>
<thead>
<tr>
<th>Sun</th>
<th>Sunrise</th>
<th>Sunset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec 1st (EST)</td>
<td>07:01</td>
<td>16:24</td>
</tr>
<tr>
<td>Dec 15th</td>
<td>07:13</td>
<td>16:24</td>
</tr>
<tr>
<td>Dec 31st</td>
<td>07:20</td>
<td>16:33</td>
</tr>
</tbody>
</table>

Astronomical and Historical Events

1st
- History: launch of Soviet satellite Sputnik 6 and two dogs: Pchelka and Mushka (1960)

2nd
- First Quarter Moon
- Kuiper Belt Object 84922 (2003 VS2) at Opposition (35.535 AU)
- History: dedication of the John J. McCarthy Observatory in New Milford, CT (2000)
- History: touchdown of Soviet Mars lander: communications were lost with Mars 3, the first spacecraft to touch down on the Red Planet, after 20 seconds, possibly due to raging dust storm (1971)
- History: launch of space shuttle Endeavour (STS-61), first servicing of the Hubble Space Telescope, including the installation of corrective optics and new solar panels (1993)
- History: Pioneer 11 spacecraft makes its closest approach to Jupiter; encounter redirects the spacecraft to Saturn and an escape trajectory out of the solar system (1974)
- History: Pioneer 10 spacecraft makes its closest approach to Jupiter; first space probe to fly through the asteroid belt and to an outer planet (1973)
Astronomical and Historical Events (continued)

3rd History: discovery of Jupiter’s moon Himalia by Charles Perrine (1904)

4th History: launch of space shuttle Endeavour (STS-88), first International Space Station construction flight, including the mating of the Unity and Zarya modules (1998)

4th History: launch of the Pathfinder spacecraft to Mars (1996)

4th History: Pioneer Venus 1 enters orbit, first of two orbiter (and probes) to conduct a comprehensive investigation of the atmosphere of Venus (1978)

4th History: launch of Gemini 7 with astronauts Frank Borman and Jim Lovell (1965)

4th History: launch of the Little Joe 2 rocket, test flight for the Mercury capsule and first U.S. animal flight with Sam, a Rhesus monkey (1959)

5th Moon at apogee (furthest distance from Earth)

7th Kuiper Belt Object 19521 Chaos at Opposition (40.642 AU)

7th Kuiper Belt Object 2004 XR190 at Opposition (56.839 AU)

7th History: arrival of the Galileo space probe at Jupiter (1995)

7th History: launch of Apollo 17 with astronauts Ronald Evans, Harrison Schmitt (first scientist – geologist) and Eugene Cernan (last man on the Moon – so far) (1972)

8th History: a Dragon spacecraft, launched by SpaceX into low-Earth orbit, is recovered in the Pacific Ocean: first time a spacecraft recovered by a commercial company (2010)

8th History: discovery of asteroid 5 Astraea by Karl Hencke (1845)

9th History: Pioneer Venus 2 enters orbit, second of two orbiter (and probes) to conduct a comprehensive investigation of the atmosphere of Venus (1978)

9th History: Ausson meteorite fall, hits building in France (1858)

10th Second Saturday Stars - Open House at the McCarthy Observatory (7:00 pm)

10th Full Moon (Full Cold Moon)

10th Total Lunar Eclipse (visible in western United States)

10th History: launch of the X-ray Multi-Mirror Mission (XMM-Newton), the largest scientific satellite built in Europe and one of the most powerful (1999)

10th History: Mihonoseki meteorite fall; through roof of a house in Japan (1992)

10th History: Claxton meteorite fall; hits mailbox (1984)

10th History: St. Louis meteorite fall, hits an automobile (1950)

12th Flyby of Saturn’s moon Dione by the Cassini spacecraft

12th Distant flyby of Saturn’s moons Calypso, Enceladus and Tethys by the Cassini spacecraft

12th History: launch of Oscar, first amateur satellite (1961)

13th Flyby of Saturn’s largest moon Titan by the Cassini spacecraft

13th Geminids meteor shower peak

14th History: flyby of Mars by Japan’s Nozomi spacecraft after an attempt to place it in orbit around Mars fails (2003)

14th History: Weston meteorite fall; first documented fall in the United States (1807)

14th History: birth of Tycho Brahe, Danish astronomer noted for his observational skills, the precision of his observations, and the instruments he developed; builder of Uraniburg, the finest observatory in Europe (1546)

15th History: launch of Soviet spacecraft, Vega 1 to Venus and then to Comet Halley (1984)

15th History: landing of Soviet spacecraft Venera 7 on the surface of Venus (1970)

15th History: discovery of Saturn’s moon Janus by Audouin Dollfus (1966)

15th History: launch of Gemini 6 with astronauts Walter Schirra and Thomas Stafford (1965)

16th History: launch of Pioneer 6, the first of four identical solar orbiting, spin-stabilized spacecraft (1965)

17th Last Quarter Moon

17th History: Wright Brothers’ first airplane flight, Kitty Hawk, N.C. (1903)

19th History: launch of space shuttle Discovery (STS-103), third servicing of the Hubble space telescope, including the installation of new gyroscopes and computer (1999)

19th History: launch of Mercury 1 (unmanned) spacecraft (1960)

19th History: Benares meteorite fall hits house in India (1798)
Astronomical and Historical Events (continued)

21st
Moon at perigee (closest distance from Earth)
21st
Scheduled launch of a Soyuz spacecraft from the Baikonur Cosmodrome with the next expedition crew bound for the International Space Station
21st
History: launch of the Soviet spacecraft Vega 2 to Venus, continued on to Comet Halley (1984)
21st
History: landing of Soviet spacecraft Venera 12 on the surface of Venus, found evidence of thunder and lightning in the atmosphere (1978)
21st
History: launch of Apollo 8 with astronauts Frank Borman, Jim Lovell and William Anders, first to circumnavigate the Moon (1968)
21st
History: launch of Luna 13, Soviet moon lander (1966)
22nd
Ursids Meteor Shower peak
22nd
Winter Solstice, 12:30 am EST
23rd
Mercury at its Greatest Western Elongation – apparent angular separation from the Sun before sunrise (22°)
23rd
History: discovery of Saturn’s moon Rhea by Giovanni Cassini (1672)
24th
New Moon
24th
History: meteorite fall in the village of Barwell (Leicestershire, England) showers village and hits automobile (1965)
24th
History: Jean-Louis Pons born into a poor family with only basic education, took post at observatory at Marseilles as concierge, went on to become most successful discoverer of comets (discovered or co-discovered 37 comets, 26 bear his name) (1761)
24th
History: inaugural launch of the Ariane rocket, Europe’s attempt to develop a cost-effective launcher to serve the commercial market (1979)
25th
History: Mars Express spacecraft enters orbit around Mars (2003)
25th
History: landing of Soviet spacecraft Venera 11 on Venus, second of two identical spacecraft (1978)
25th
History: launch of Soviet Salyut 4 space station (1974)
27th
History: discovery of the ALH84001 Martian meteorite in the Allan Hills, Far Western Icefield, Antarctica, made famous by the announcement of the discovery of evidence for primitive Martian bacterial life (1984)
27th
History: Johannes Kepler born, German mathematician and astronomer who postulated that the Earth and planets travel about the sun in elliptical orbits, developed three fundamental laws of planetary motion (1571)
30th
History: flyby of Jupiter by Cassini spacecraft on mission to Saturn (2000)
30th
History: discovery of Uranus’ moon Puck by Stephen Synnott (1985)
31st
GRAIL-A spacecraft enters lunar orbit

References on Distances

• The apparent width of the Moon (and Sun) is approximately one-half a degree (½°), less than the width of your little finger at arm’s length which covers approximately one degree (1°); three fingers span approximately five degrees (5°)
• One astronomical unit (AU) is the distance from the Sun to the Earth or approximately 93 million miles

International Space Station/Space Shuttle/Iridium Satellites

Visit www.heavens-above.com for the times of visibility and detailed star charts for viewing the International Space Station, the Space Shuttle (when in orbit) and the bright flares from Iridium satellites.

Solar Activity

For the latest on what’s happening on the Sun and the current forecast for flares and aurora, check out www.spaceweather.com.
Page 3 Photo - Earthlight

Photo by Bill Cloutier, April 2005

Image Credits

Front page and graphic calendars: Allan Ostergren

Page 3: Earthlight. The unlit portion of the waxing crescent Moon is illuminated by sunlight reflecting off the earth’s surface and atmosphere – also called Earthshine. The effect was first correctly explained by Leonardo Da Vinci circa 1510

All non-credited photos were taken by the author: Bill Cloutier
FREE EVENT
Every Month at the
John J. McCarthy Observatory
Behind the New Milford High School
860.946.0112
www.mccarthyobservatory.org

December 10th
7:00 - 9:00 pm

DARK ENERGY:
The Real Universe?
December 2011 Celestial Calendar

Phases of the Moon

<table>
<thead>
<tr>
<th>Sunday</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dec 2</td>
<td>Dec 5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dec 10</td>
<td>Dec 13</td>
<td>3</td>
<td>Discovery of Jupiter moon Himalaya by Charles Perrine 1964</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dec 18</td>
<td>Dec 20</td>
<td>2</td>
<td>Flyby of Jupiter by Pioneer spacecraft 1973</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dec 25</td>
<td>Dec 27</td>
<td>1</td>
<td>Launch of SOHO solar observatory (1995)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dec 28</td>
<td>Dec 30</td>
<td>2</td>
<td>Dedication of John J. McCarthy Observatory in New Milford, CT - 2000</td>
</tr>
</tbody>
</table>

Significant Events
- **December 4:** Launch of Pathfinder spacecraft to Mars - 1996
- **December 9:** Launch of Little Rhesus monkey on Venus, 4 days after sister spacecraft Vega 1 to Venus and on to Comet Halley (1978)
- **December 11:** Challenger, the Lunar Lander for Apollo 17, touched down on the Moon's surface with astronauts Harrison Schmitt and Eugene Cernan - last two men to walk on moon (1972)
- **December 12:** Challenger, the Lunar Lander for Apollo 17, touched down on the Moon's surface with astronauts Harrison Schmitt and Eugene Cernan - last two men to walk on moon (1972)
- **December 13:** Launch of Oscar, first amateur satellite (1961)
- **December 16:** Launch of Pioneer 6, first of four solar orbiting spacecraft
- **December 17:** Wright Brothers first flight, Kitty Hawk, NC 1903
- **December 18:** NASA showed the 1st images from the $670 million Spitzer Space Telescope, launched 4 months earlier (2003)
- **December 19:** Mars Express spacecraft orbits Red planet (2003)
- **December 20:** Benares meteorite, hits house in India 1798
- **December 21:** Jupiter and gets Jovian gravity boost, while en route to Saturn (2000)
- **December 22:** Discovery of LEW 85516 meteorite - Martian origin (1988)
- **December 23:** Mars origin meteorite QUE 94201 discovered in Queen Alexander range, Antarctica 1994
- **December 24:** Jean-Louis Pons born - discoveror of comets 1761
- **December 25:** Launch of Soviet moon Juno by Audouin Dufaux (1966)
- **December 27:** Johannes Kepler born 1571 - established laws of planetary motion
- **December 29:** Discovery of Uranus' moon Puck by Stephen Synnott 1983
- **December 30:** Discovery of GRAIL-A spacecraft (Gravity Recovery And Interior Laboratory) enters lunar orbit, to be followed by GRAIL-B the following day. Duo will map the moon's gravity field,